9 research outputs found

    Timing analysis of synchronous data flow graphs

    Get PDF
    Consumer electronic systems are getting more and more complex. Consequently, their design is getting more complicated. Typical systems built today are made of different subsystems that work in parallel in order to meet the functional re- quirements of the demanded applications. The types of applications running on such systems usually have inherent timing constraints which should be realized by the system. The analysis of timing guarantees for parallel systems is not a straightforward task. One important category of applications in consumer electronic devices are multimedia applications such as an MP3 player and an MPEG decoder/encoder. Predictable design is the prominent way of simultaneously managing the design complexity of these systems and providing timing guarantees. Timing guarantees cannot be obtained without using analyzable models of computation. Data flow models proved to be a suitable means for modeling and analysis of multimedia applications. Synchronous Data Flow Graphs (SDFGs) is a data flow model of computation that is traditionally used in the domain of Digital Signal Processing (DSP) platforms. Owing to the structural similarity between DSP and multimedia applications, SDFGs are suitable for modeling multimedia applications as well. Besides, various performance metrics can be analyzed using SDFGs. In fact, the combination of expressivity and analysis potential makes SDFGs very interesting in the domain of multimedia applications. This thesis contributes to SDFG analysis. We propose necessary and sufficient conditions to analyze the integrity of SDFGs and we provide techniques to capture prominent performance metrics, namely, throughput and latency. These perfor- mance metrics together with the mentioned sanity checks (conditions) build an appropriate basis for the analysis of the timing behavior of modeled applications. An SDFG is a graph with actors as vertices and channels as edges. Actors represent basic parts of an application which need to be executed. Channels represent data dependencies between actors. Streaming applications essentially continue their execution indefinitely. Therefore, one of the key properties of an SDFG which models such an application is liveness, i.e., whether all actors can run infinitely often. For example, one is usually not interested in a system which completely or partially deadlocks. Another elementary requirement known as boundedness, is whether an implementation of an SDFG is feasible using a lim- ited amount of memory. Necessary and sufficient conditions for liveness and the different types of boundedness are given, as well as algorithms for checking those conditions. Throughput analysis of SDFGs is an important step for verifying throughput requirements of concurrent real-time applications, for instance within design-space exploration activities. In fact, the main reason that SDFGs are used for mod- eling multimedia applications is analysis of the worst-case throughput, as it is essential for providing timing guarantees. Analysis of SDFGs can be hard, since the worst-case complexity of analysis algorithms is often high. This is also true for throughput analysis. In particular, many algorithms involve a conversion to another kind of data flow graph, namely, a homogenous data flow graph, whose size can be exponentially larger than the size of the original graph and in practice often is much larger. The thesis presents a method for throughput analysis of SD- FGs which is based on explicit state-space exploration, avoiding the mentioned conversion. The method, despite its worst-case complexity, works well in practice, while existing methods often fail. Since the state-space exploration method is akin to the simulation of the graph, the result can be easily obtained as a byproduct in existing simulation tools. In various contexts, such as design-space exploration or run-time reconfigu- ration, many throughput computations are required for varying actor execution times. The computations need to be fast because typically very limited resources or time can be dedicated to the analysis. In this thesis, we present methods to compute throughput of an SDFG where execution times of actors can be param- eters. As a result, the throughput of these graphs is obtained in the form of a function of these parameters. Calculation of throughput for different actor exe- cution times is then merely an evaluation of this function for specific parameter values, which is much faster than the standard throughput analysis. Although throughput is a very useful performance indicator for concurrent real-time applications, another important metric is latency. Especially for appli- cations such as video conferencing, telephony and games, latency beyond a certain limit cannot be tolerated. The final contribution of this thesis is an algorithm to determine the minimal achievable latency, providing an execution scheme for executing an SDFG with this latency. In addition, a heuristic is proposed for optimizing latency under a throughput constraint. This heuristic gives optimal latency and throughput results in most cases

    Verifying Monadic Second-Order Properties of Graph Programs

    Get PDF
    The core challenge in a Hoare- or Dijkstra-style proof system for graph programs is in defining a weakest liberal precondition construction with respect to a rule and a postcondition. Previous work addressing this has focused on assertion languages for first-order properties, which are unable to express important global properties of graphs such as acyclicity, connectedness, or existence of paths. In this paper, we extend the nested graph conditions of Habel, Pennemann, and Rensink to make them equivalently expressive to monadic second-order logic on graphs. We present a weakest liberal precondition construction for these assertions, and demonstrate its use in verifying non-local correctness specifications of graph programs in the sense of Habel et al.Comment: Extended version of a paper to appear at ICGT 201

    Towards the specification and verification of modal properties for structured systems

    Get PDF
    System specification formalisms should come with suitable property specification languages and effective verification tools. We sketch a framework for the verification of quantified temporal properties of systems with dynamically evolving structure. We consider visual specification formalisms like graph transformation systems (GTS) where program states are modelled as graphs, and the program behavior is specified by graph transformation rules. The state space of a GTS can be represented as a graph transition system (GTrS), i.e. a transition system with states and transitions labelled, respectively, with a graph, and with a partial morphism representing the evolution of state components. Unfortunately, GTrSs are prohibitively large or infinite even for simple systems, making verification intractable and hence calling for appropriate abstraction techniques

    Graph passing in graph transformation

    No full text
    Graph transformation works under the whole world assumption. Therefore, in realistic systems, both the individual graphs and the set of all such graphs can grow very large. In reactive formalisms such as process algebra, on the other hand, each system is split into smaller components which continually interact; the interactions pass information such as names or locations between components. The state spaces for the separate components are typically much smaller, and much efficiency can be gained by analysing system behaviour on this level. In this paper we present a framework for compositional graph transformation inspired by name-passing calculi, in which (knowledge about) subgraphs can be passed between components. Essentially, we define graph-passing (reactive) component rules and their composition into traditional (reductive) whole-world rules. This extends previous work in which a simpler form of composition was proposed. The main result is a soundness and completeness result for the composition, showing that the transformations induced by the component rules and their whole-world counterparts are equivalent

    Resource-efficient routing and scheduling of time-constrained streaming communication on networks-on-chip

    No full text
    Network-on-chip-based multiprocessor systems-on-chip are considered as future embedded systems platforms. One of the steps in mapping an application onto such a parallel platform involves scheduling the communication on the network-on-chip. This paper presents different scheduling strategies that minimize resource usage by exploiting all scheduling freedom offered by networks-on-chip. It also introduces a technique to take the dynamism in applications into account when scheduling the communication of an application on the network-on-chip while minimizing the resource usage. Our experiments show that resource-utilization is improved when compared to existing techniques

    Generalised compositionality in graph transformation

    No full text
    We present a notion of composition applying both to graphs and to rules, based on graph and rule interfaces along which they are glued. The current paper generalises a previous result in two different ways. Firstly, rules do not have to form pullbacks with their interfaces; this enables graph passing between components, meaning that components may “learn‿ and “forget‿ subgraphs through communication with other components. Secondly, composition is no longer binary; instead, it can be repeated for an arbitrary number of components

    Parameterized Verification and Model Checking for Distributed Broadcast Protocols

    No full text
    We report on recent research lines related to parameterized verification and model checking applied to formal models of distributed algorithms. Both approaches are based on graph rewriting and graph transformation systems. Case-studies include distributed mutual exclusion protocols like Ricart-Agrawala, routing protocols like link reversal, and distributed consensus protocols like Paxos. Verification algorithms for restricted classes of models exploit finite-state abstractions, symbolic representations based on graph orderings, the theory of well-structured transition systems, and reachability algorithms based on labeling procedures. \uc2\ua9 2014 Springer International Publishing Switzerland
    corecore